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Topology describes, characterizes, and discriminates shapes by studying 
their properties that are preserved under continuous deformations,    

such as stretching and bending, but not tearing or gluing

Topological Data Analysis



Assumption in TDA: Any data can be endowed with a shape. 
So, any data can be studied in terms of its topological features

Topological Data Analysis



Topological Data Analysis

Data

Features Shape

Compute the topological features of 
the retrieved shape

Exploit the extracted features 
to describe, characterize,   

and discriminate data
Associate a topological 
structure to a dataset



Geometry or Topology?

Which of these domains look similar?



Geometry or Topology?

And what about these ones?



Geometry or Topology?

The answer depends on the point of view we adopt

E.g. length, area, volume, angles, curvature, …

Geometry cares about those properties which change  
when an object is continuously deformed



Geometry or Topology?

The answer depends on the point of view we adopt

Geometry cares about those properties which change  
when an object is continuously deformed

Topology do not{
E.g. connectivity, orientation, manifoldness, …



Why Topology?

In life or social sciences, distances (metric) are constructed using a notion of  
similarity (proximity): e.g. distance between faces, gene expression proles,  
Jukes-Cantor distance between sequences 

We have that: 
✦ Construction of a distance has no theoretical backing 
✦ Small distances still represent similarity, but long distance comparisons 

hardly make sense 
✦ Distance measurements are typically noisy 
✦ Physical devices, e.g. human eyes, may ignore differences in proximity 

Topology is the crudest way to capture invariants under distortions of distances 

(even if, at the presence of noise, one needs topology varied with scales)



Topological Spaces

A topological space (X, T) is a non-empty set X endowed with a family T,  
called topology, of subsets of X satisfying the following properties:  

✦ X and the empty set ∅ belong to T 

✦ Union of any collection of elements of T is in T 

✦ Intersection of any finite collection of elements of T is in T  

A set U in T is called open set. A set F such that X \ F is in T is called closed set 
Dually to the above definition, a topological space can be characterized by 
defining its closed sets

Definition:



Topological Spaces

Given the set X := {a, b, c}, define a topology T for X

Exercise:

a

b c



Topological Spaces

Which of the following families are topologies for X?

Exercise:

a
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Topological Spaces

Which of the following families are topologies for X?

Exercise:

a

b c

a

b c

a

b c

a

b c

a

b cTrivial topology: 

i.e. T := {∅, X}

Discrete topology: 

i.e. T := P(X)



Topological Spaces

Let T be a topology of a non-empty set X. A basis of T is a family of open sets 
ℬ ⊆ T such that each open sets of T is union of elements of ℬ

Definition:

Proposition:

Let X be a non-empty set and ℬ be a family of subsets of X such that: 

✦ ∪B∊ℬ B = X 

✦ For any A, B ∊ ℬ, A ∩ B is union of elements of ℬ 

Then, there exists a (unique) topology T of X of which ℬ is a basis



Metric Spaces as Topological Spaces

A metric space (X, d) is a non-empty set X on which is defined a function        
d: X × X → ℝ, called distance, such that, for any x, y, z ∊ X: 
✦ d(x, y) ≥ 0 
✦ d(x, y) = 0 if and only if x = y               (identity of indiscernibles) 
✦ d(x, y) = d(y, x)                                                                (symmetry) 
✦ d(x, z) ≤ d(x, y) + d(y, z)     (subadditivity or triangle inequality)

Definition:

Proposition:

Each metric space (X, d) is a topological space (X, T) with respect to the topology T 
having as basis ℬ := {B(x, r) | x ∊ X, r > 0},  where  

B(x, r) is the open ball of radius r centered in x defined as B(x, r) := {y ∊ X | d(x, y) < r}



induced by the metric space (ℝn, d) where d is defined as

Metric Spaces as Topological Spaces

Example:

d(x, y) :=

vuut
nX

i=1

(xi � yi)2

<latexit sha1_base64="/9p8DByVbXJF/RxFt5K077WO4rQ="></latexit>

The n-dimensional Euclidean space "n is the topological space

For any p ≥ 1, the Minkowski distance dp 
induces the same topology on ℝn

dp(x, y) :=

 
nX

i=1

|xi � yi|p
!1/p

<latexit sha1_base64="jLj6uV0wpFz+tIthslL72MQtapw="></latexit>



Topological Spaces

Some Basic Notions:

 Given a topological space (X, T), an element x of X, and a subset S of X: 

✦ A neighborhood of x is a subset V of X that includes an open set U 
containing x ( i.e. x ∊ U ⊆ V )

✦ The interior i(S) of S is the union of all subset of S that are open of X 
✤ i(S) consists of the elements x of X for which there exists an open neighborhood V 

of x completely contained in S

✦ The closure c(S) of S is the intersection of all closed sets containing S  
✤ c(S) consists of the elements x of X for which every open neighborhood V of x  

contains a element of S 

✦ The boundary #(S) of S is the set of elements in the closure of S not belonging to the interior 

of S ( i.e. #(S) = c(S) \ i(S) ) 
✤ #(S) consists of the elements x of X for which every open neighborhood V of x intersects both S and X \ S



Topological Spaces

Given a topological space (X, T) and a subset S of X,  
the subspace topology TS on S is defined as 

TS := { S ∩ U | U ∊ T } 

I.e. a subset of S is an open set of TS if and only if  it is the intersection of S with 
an open set of X 

S equipped with the subset topology TS is called a subspace of (X, T)

Definition:

X

U

S

S ∩ U



Continuous Functions

Given two topological spaces (X, T) and (X’, T’),  a function f: X →	X’ is called  

✦ Continuous in x ∊ X if, for each neighborhood V’ of f(x) in X’,  
there exists a neighborhood V of x in X such that f(V) ⊆ V’ 

✦ Continuous if it is continuous in each element x ∊ X or, equivalently, 
if, for each open set U’ of X’, f -1 (U’) is an open set of X 

Definition:

V

X

x

X’

f(V)

V’

f(x)

f(V)f



Continuous Functions

Exercise:

Let X be a non-empty set X and let T, T’ be the discrete and the trivial topologies 
on X, respectively. Which of the following functions is continuous? 

✦ the identity map    id: (X, T)  →	(X, T’) 

✦ the identity map   id’: (X, T’)  →	(X, T)



Continuous Functions

Given two metric spaces (X, d) and (X’, d’),  a function f: X →	X’ is continuous in x ∊ X 

if and only if  

∀$ > 0 ∃ % > 0 such that, for any y ∊ X with d(x, y) < %, d’(f(x), f(y)) < $

Proposition:

x

f(x)



Homeomorphisms

Definition:

Given two topological spaces (X, T) and (X’, T’),                                                          
a function f: X →	X’ is called homeomorphism if: 

✦ f is a bijection 
✦ f is continuous  
✦ f -1 is continuous

f -1

f 

X X’ 

Two topological spaces (X, T) and (X’, T’) are homeomorphic and denoted X ≅ X’ 
if there exists a homeomorphism f: X →	X’  
Homeomorphisms induce an equivalence relation of topological spaces 
partitioning them into equivalence classes 



Homeomorphisms

Intuitively:

The notion of homeomorphism captures the idea of continuous deformation

≅



Homeomorphisms

One can:

Intuitively:



Homeomorphisms

One can:
✦ Stretch

Intuitively:



Homeomorphisms

One can:
✦ Stretch
✦ Compress

Intuitively:



Homeomorphisms

One can:
✦ Stretch
✦ Compress

But not too much!

Intuitively:



Homeomorphisms

Moreover:

Intuitively:



Homeomorphisms

Moreover:
✦ No Cut

Intuitively:



Homeomorphisms

Moreover:
✦ No Cut
✦ No Glue

Intuitively:



Definition:

I is a topological invariant if, given two topological spaces (X, T) and (X’, T’),

X

X is homeomorphic to X’

X’

ɔ

X and X’ have the same 
topological invariant

I(X) = I(X’)

Some classical topological invariants: 

✦ Connectedness 

✦ Compactness 

✦ Manifoldness 

✦ Orientability 

✦ Euler characteristic 

✦ Homology 

✦ Homotopy 

Topological Invariants



Question:

Is there a “perfect” topological invariant I such that 

 X ≅ X’ if and only if I(X) = I(X’)?

Topological Invariants



Question:

Is there a “perfect” topological invariant I such that 

 X ≅ X’ if and only if I(X) = I(X’)?

Topological Invariants

Let us simplify the question and let focus on: 
✦ Considering a specific topological invariant I (e.g. the homology) 

✦ Completely characterizing just the spheres Sn := { x ∊ ℝn : |x| = 1 } 

The above question turns into the following:

If X and S
n
 have the same homology, then X ≅ S

n
?



Question:

Is there a “perfect” topological invariant I such that 

 X ≅ X’ if and only if I(X) = I(X’)?

Topological Invariants

Let us simplify the question and let focus on: 
✦ Considering a specific topological invariant I (e.g. the homology) 

✦ Completely characterizing just the spheres Sn := { x ∊ ℝn : |x| = 1 } 

The above question turns into the following:

If X and S
n
 have the same homology, then X ≅ S

n
?

NO



But:

Topological Invariants

Replacing homology with homotopy, the answer is positive!



But:

Topological Invariants

Replacing homology with homotopy, the answer is positive!

If X is a closed n-manifold homotopy equivalent to S
n
, then X ≅ S

n

Poincaré Conjecture (3rd Millennium Prize Problem):

Proven by Grigori Perelman in 2003



But:

Topological Invariants

Replacing homology with homotopy, the answer is positive!

If X is a closed n-manifold homotopy equivalent to S
n
, then X ≅ S

n

Poincaré Conjecture (3rd Millennium Prize Problem):

Proven by Grigori Perelman in 2003

So: Why we will mainly focus on homology rather than homotopy?



But:

Topological Invariants

Replacing homology with homotopy, the answer is positive!

If X is a closed n-manifold homotopy equivalent to S
n
, then X ≅ S

n

Poincaré Conjecture (3rd Millennium Prize Problem):

Proven by Grigori Perelman in 2003

So: Why we will mainly focus on homology rather than homotopy?

Because, in practice, computing homotopy groups is nearly impossible!



Connected Spaces

Definition:

A topological space (X, T) is connected if, given any two disjoint open sets U and V s.t.  

X = U ∪ V, then U = ∅ or V = ∅ 

I.e. X cannot be written as the union of two non-empty disjoint open sets of X  

A connected component of X is a maximal connected subset of X 



Connected Spaces

Definition:

A topological space (X, T) is path-connected if, for every pair x, y ∈ X, there exists  

a continuous map α: [0,1] → X such that α(0) = x and α(1) = y 

The map α is called a path from x to y 

A path-connected component of X is a  

maximal path-connected subset of X  

If X is path-connected, then X is connected. The converse is not true 

α

x
y

Proposition:



Compact Spaces

Definition:

An open cover of a topological space (X, T) is a collection C of open sets Ui of X whose union 

is the whole space X, i.e. X ⊇ ∪i∊I Ui. A subcover of C is a subset of C that still covers X

A topological space (X, T) is called compact if any of its open covers has a finite subcover

Heine-Borel Theorem:

A subset S of the Euclidean space "n is compact if and only if S is closed and bounded 

( i.e. there exists r > 0 such that, for any x, y ∊ S, d(x, y) < r )



Manifolds

Definitions:

A topological space (X, T) is called  

✦ locally homeomorphic to "n if every element x ∈ X has a neighborhood which is  
homeomorphic to the n-dimensional Euclidean space "n 

✦ Hausdorff if any pair of distinct elements x, y ∈ X admits disjoint neighborhoods                       
(any metric space and so any subspace of an Euclidean space is Hausdorff) 

A (topological) n-manifold M is a Hausdorff space that is locally homeomorphic to the 
n-dimensional Euclidean space "n 

A (topological) n-manifold with boundary M is a Hausdorff space in which every 
element has a neighborhood homeomorphic to the n-dimensional Euclidean space "n 

or to the n-dimensional Euclidean half-space H
n
 := { x ∊ ℝn

 |  xn ≥ 0 }



Manifolds

Examples:

Recall that a torus can be built from a unit square by the following construction

manifold with boundarymanifold non-manifold



Definition:

A surface (i.e. a topological 2-manifold with or without boundary) S is called orientable 
if it is possible to make a consistent choice of surface normal vector at every point of S

Orientable Surfaces

orientableorientable non-orientable



Remark:

As for the torus and the cylinder,                                                                                                    
the Möbius strip can be built from a unit square via edge identification

Orientable Surfaces

cylinder

Möbius strip
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