Topological Data Analysis

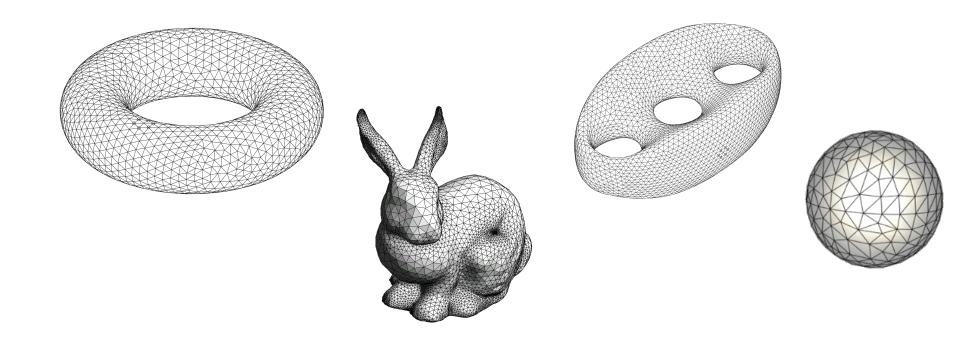
A Primer on Topology

Ulderico Fugacci

CNR - IMATI

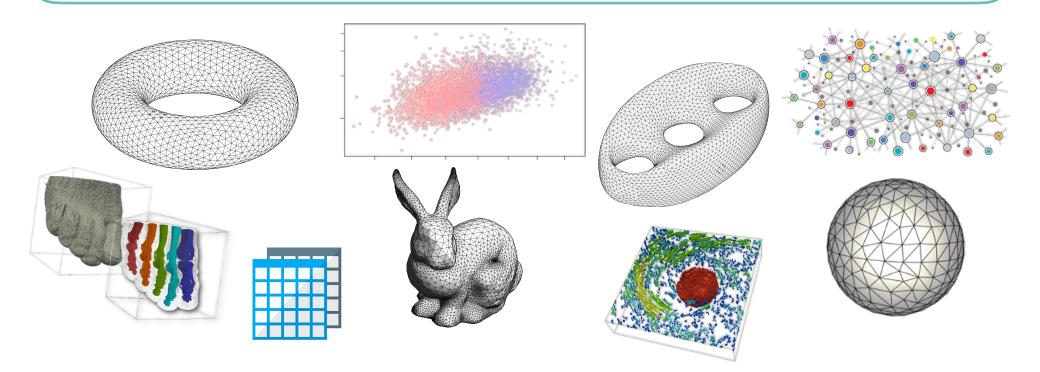
Topological Data Analysis

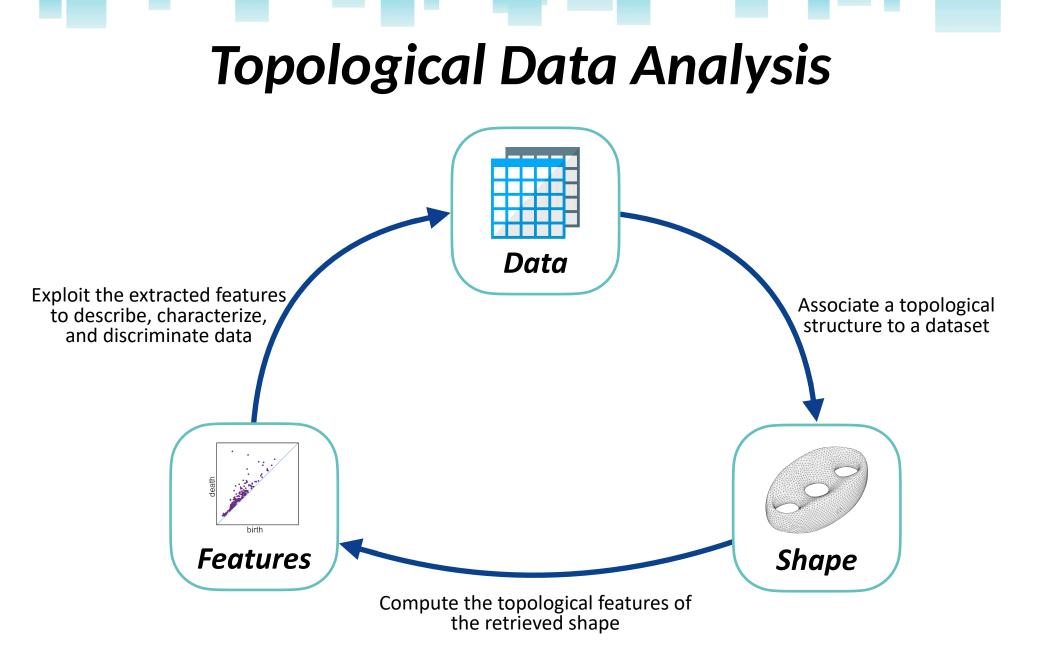
Topology *describes, characterizes,* and *discriminates shapes* by studying their properties that are preserved under *continuous deformations*, such as *stretching* and *bending*, but *not tearing* or *gluing*



Topological Data Analysis

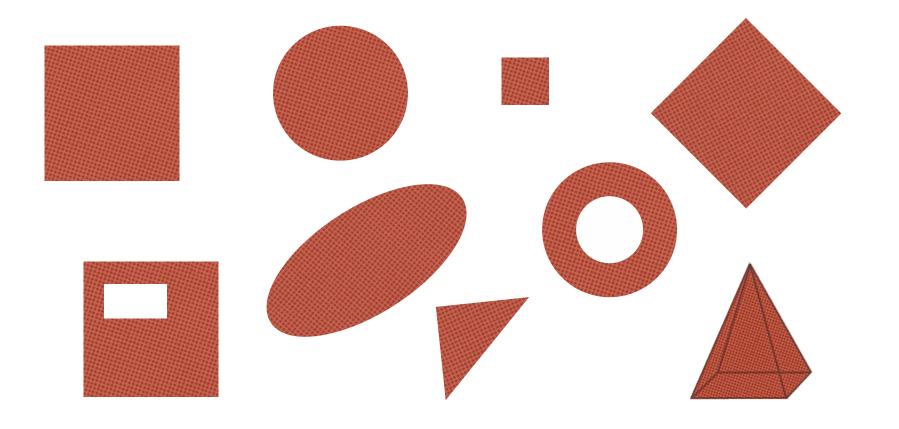
Assumption in TDA: *Any data* can be endowed with a *shape*. So, any data can be studied in terms of its *topological features*





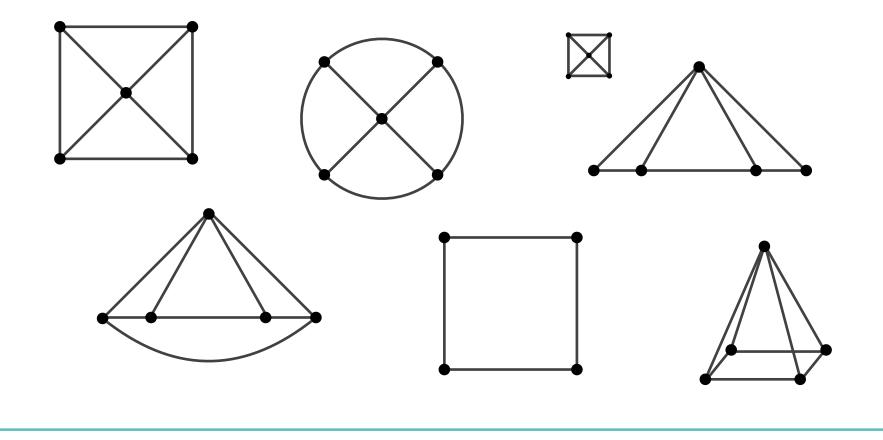
Geometry or Topology?

Which of these domains look similar?



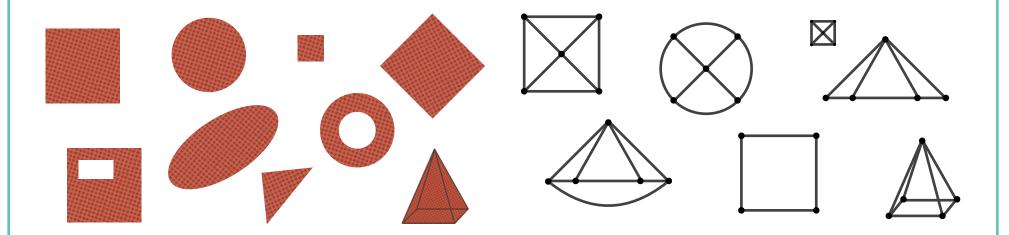
Geometry or Topology?

And what about these ones?



Geometry or Topology?

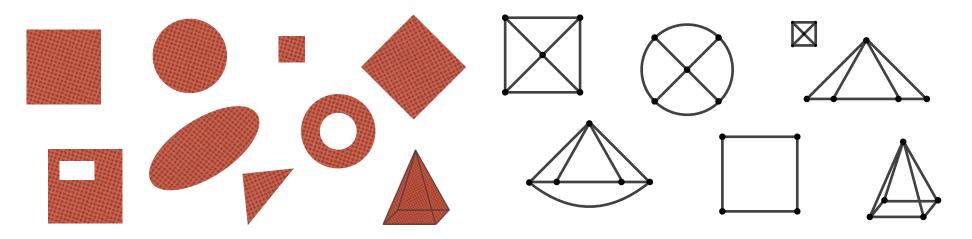
The answer depends on the *point of view* we adopt



Geometry cares about those properties which change when an object is continuously deformed E.g. length, area, volume, angles, curvature, ...

Geometry or Topology?

The answer depends on the point of view we adopt



Topology Georetry cares about those properties which change when an object is continuously deformed E.g. connectivity, orientation, manifoldness, ...

Why Topology?

In life or social sciences, **distances** (**metric**) are constructed using a notion of **similarity** (**proximity**): e.g. distance between faces, gene expression proles, Jukes-Cantor distance between sequences

We have that:

- Construction of a distance has *no theoretical backing*
- Small distances still represent similarity, but *long distance comparisons hardly make sense*
- Distance measurements are *typically noisy*
- Physical devices, e.g. human eyes, may *ignore differences in proximity*

Topology is the crudest way to capture invariants under distortions of distances (even if, at the presence of noise, one needs topology varied with scales)

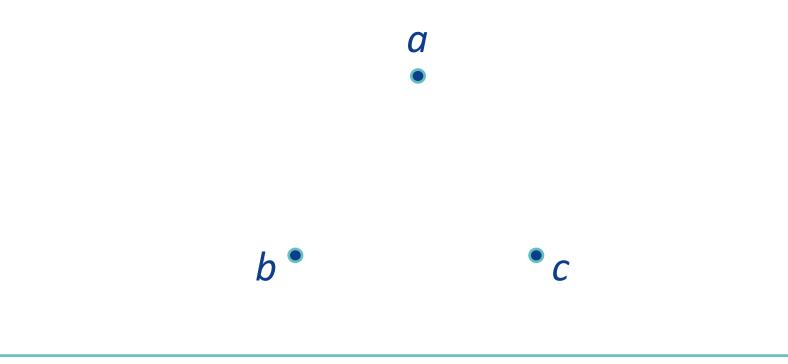
Definition:

A *topological space (X, T)* is a non-empty set X endowed with a family T, called *topology*, of subsets of X satisfying the following properties:

- ★ X and the empty set Ø belong to T
- Union of any collection of elements of T is in T
- Intersection of any finite collection of elements of T is in T

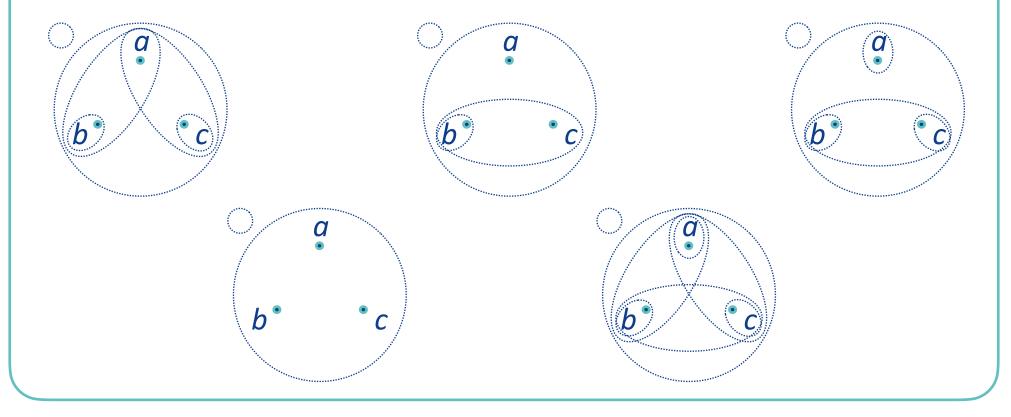
A set U in T is called *open set*. A set F such that X \ F is in T is called *closed set Dually* to the above definition, a topological space can be characterized by defining its closed sets

Given the set X := {a, b, c}, define a topology T for X



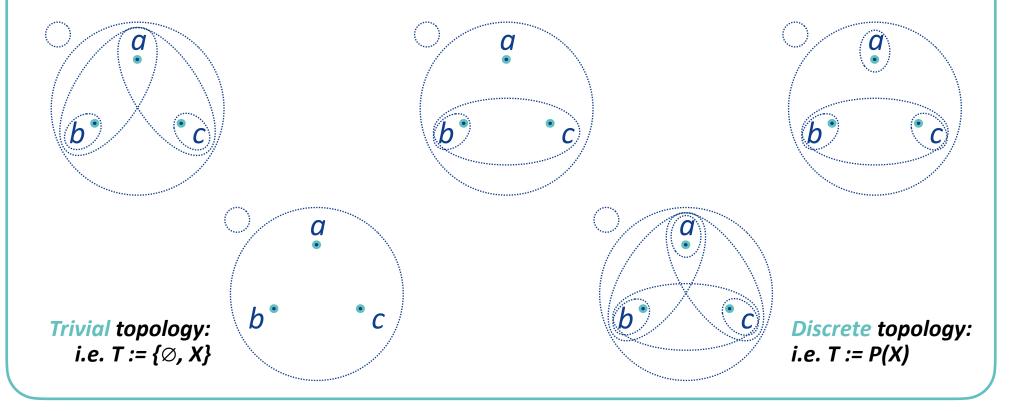
Exercise:

Which of the following families are topologies for X?



Exercise:

Which of the following families are topologies for X?



Proposition:

Let T be a topology of a non-empty set X. A *basis* of T is a family of open sets $\mathscr{B} \subseteq T$ such that *each open sets of T is union of elements of \mathscr{B}*

Let X be a non-empty set and \mathscr{B} be a family of subsets of X such that:

- $\bullet \quad \bigcup_{\mathsf{B}\in\mathscr{B}} \mathsf{B} = \mathsf{X}$
- For any A, B $\in \mathscr{B}$, A \cap B is union of elements of \mathscr{B}

Then, **there exists a (unique) topology** T of X of which \mathscr{B} is a basis

Metric Spaces as Topological Spaces

Definition:

A *metric space (X, d)* is a non-empty set X on which is defined a function d: $X \times X \longrightarrow \mathbb{R}$, called *distance*, such that, for any x, y, z \in X:

- $d(x, y) \ge 0$
- d(x, y) = 0 if and only if x = y (identity of indiscernibles)
- d(x, z) ≤ d(x, y) + d(y, z) (subadditivity or triangle inequality)

Proposition:

Each metric space (X, d) is a topological space (X, T) with respect to the topology T having as basis ℬ := {B(x, r) | x ∈ X, r > 0}, where
B(x, r) is the open ball of radius r centered in x defined as B(x, r) := {y ∈ X | d(x, y) < r}</p>

Metric Spaces as Topological Spaces

Example: The *n*-dimensional Euclidean space \mathbb{E}^n is the topological space

induced by the metric space (\mathbb{R}^n , d) where d is defined as

$$d(x,y) := \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

For any $p \ge 1$, the *Minkowski distance* d_p

induces the same topology on \mathbb{R}^n

$$d_p(x,y) := \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{1/p}$$

Some Basic Notions:

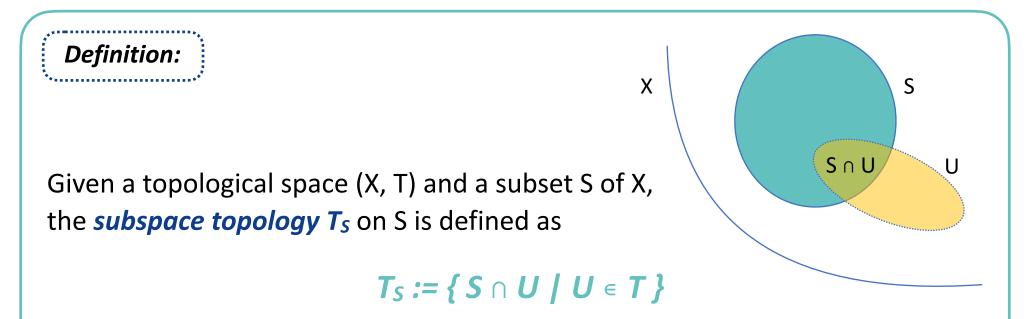
Given a topological space (X, T), an element x of X, and a subset S of X:

- A *neighborhood of x* is a subset V of X that includes an open set U containing x (i.e. x ∈ U ⊆ V)
- The *interior i(S)* of S is the union of all subset of S that are open of X
 - i(S) consists of the elements x of X for which there exists an open neighborhood V of x completely contained in S
- The closure c(S) of S is the intersection of all closed sets containing S
 - c(S) consists of the elements x of X for which every open neighborhood V of x contains a element of S
- The *boundary* ∂(S) of S is the set of elements in the closure of S not belonging to the interior of S (i.e. ∂(S) = c(S) \ i(S))

S

* $\partial(S)$ consists of the elements x of X for which every open neighborhood V of x intersects both S and X \ S

Topological Spaces



I.e. a subset of S is an open set of T_S if and only if it is the intersection of S with an open set of X

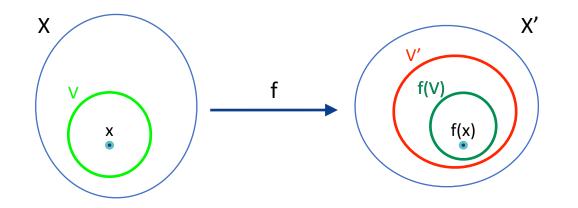
S equipped with the subset topology T_s is called a *subspace* of (X, T)

Continuous Functions

Given two topological spaces (X, T) and (X', T'), a *function f:* $X \rightarrow X'$ is called

- ★ Continuous in x ∈ X if, for each neighborhood V' of f(x) in X', there exists a neighborhood V of x in X such that $f(V) \subseteq V'$
- Continuous if it is continuous in each element x ∈ X or, equivalently,

if, for each open set U' of X', $f^{-1}(U')$ is an open set of X



Let X be a non-empty set X and let T, T' be the discrete and the trivial topologies on X, respectively. Which of the following functions is continuous?

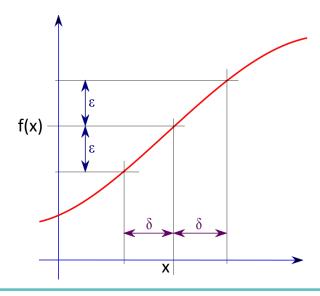
- the identity map id: (X, T) \rightarrow (X, T')
- the identity map $id': (X, T') \rightarrow (X, T)$

Continuous Functions

Given two metric spaces (X, d) and (X', d'), a function f: $X \rightarrow X'$ is continuous in $x \in X$

if and only if

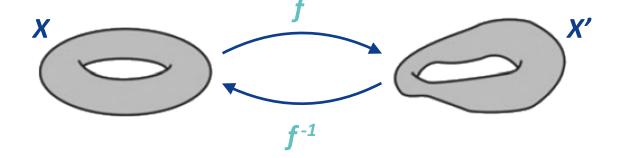
 $\forall \varepsilon > 0 \exists \delta > 0$ such that, for any $y \in X$ with $d(x, y) < \delta$, $d'(f(x), f(y)) < \varepsilon$



Homeomorphisms

Given two topological spaces (X, T) and (X', T'), a function f: $X \rightarrow X'$ is called *homeomorphism* if:

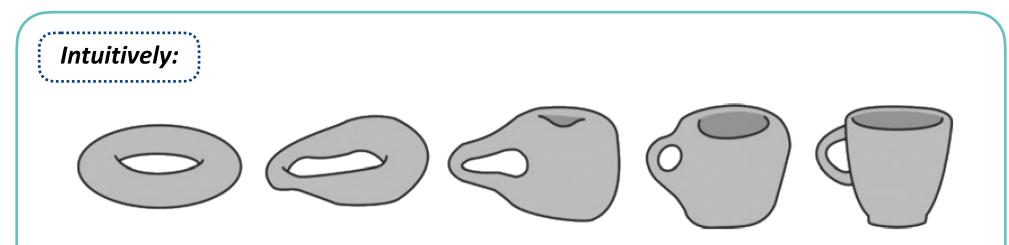
- f is a *bijection*
- f is continuous
- f⁻¹ is continuous



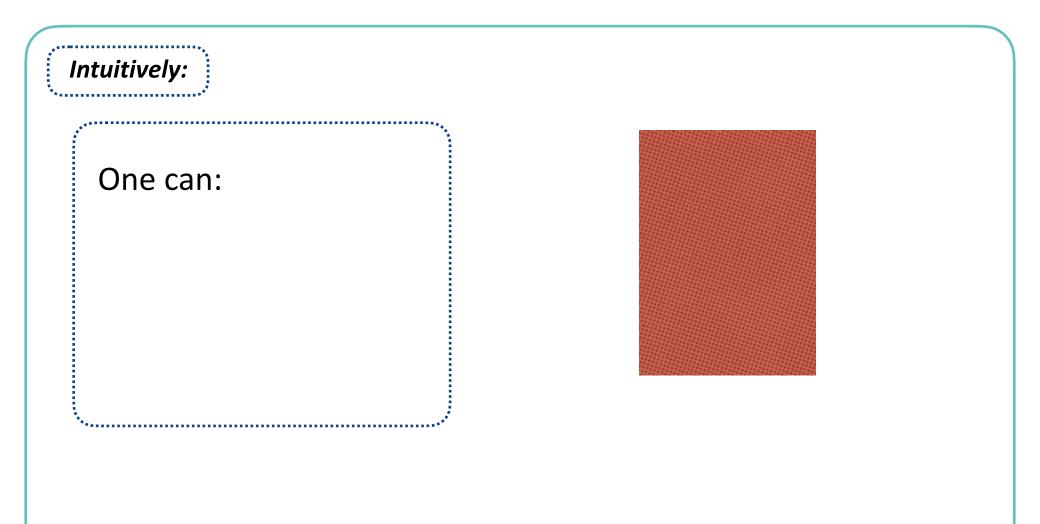
Two topological spaces (X, T) and (X', T') are *homeomorphic* and denoted $X \cong X'$ if there exists a homeomorphism f: $X \rightarrow X'$

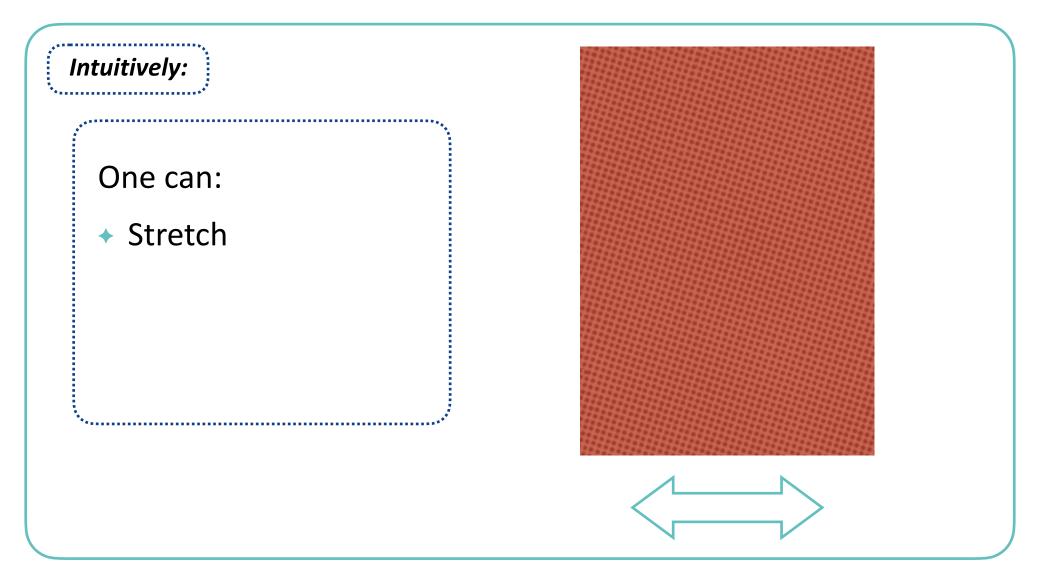
Homeomorphisms induce an *equivalence relation* of topological spaces partitioning them into equivalence classes

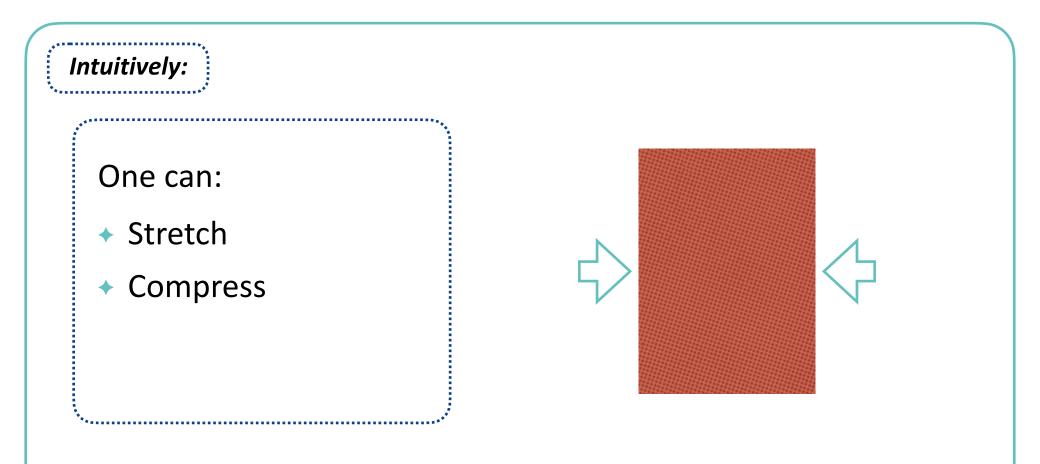
Homeomorphisms

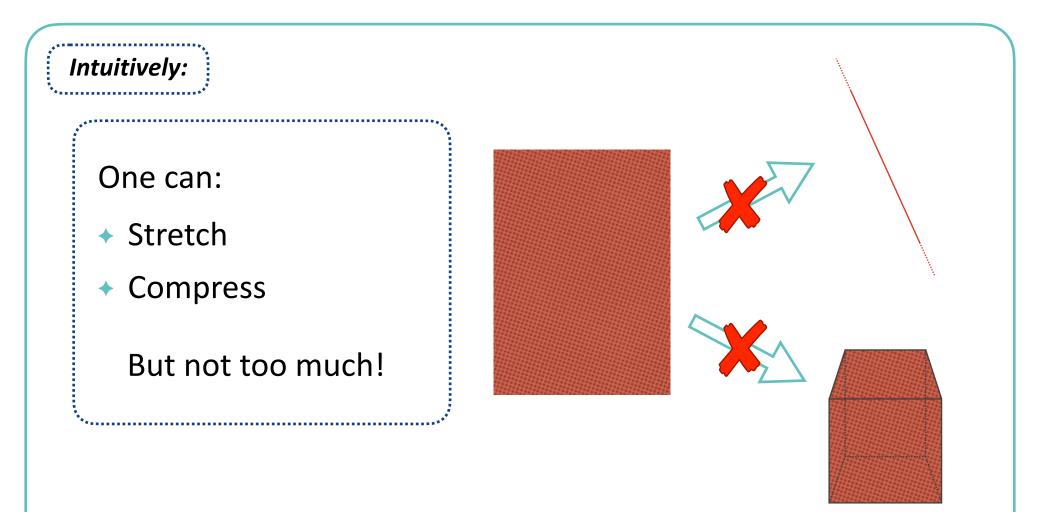


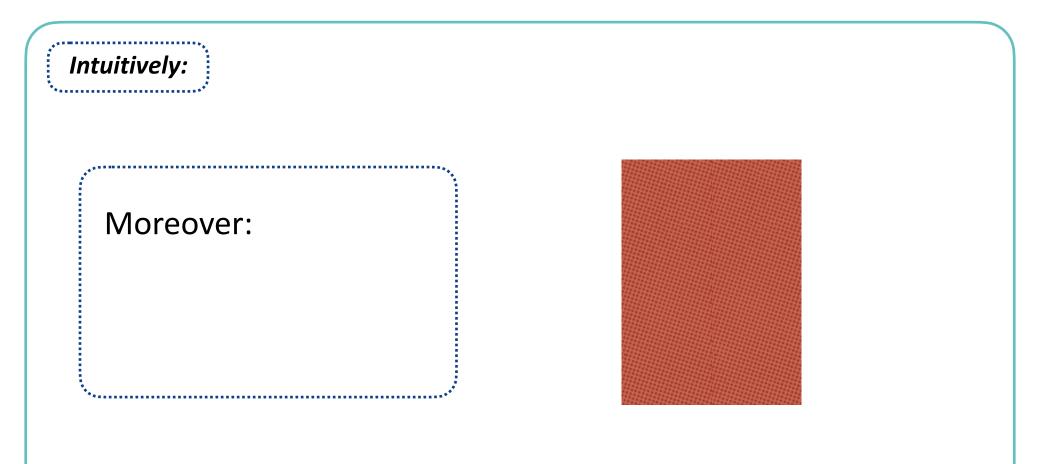
The notion of homeomorphism captures the idea of continuous deformation

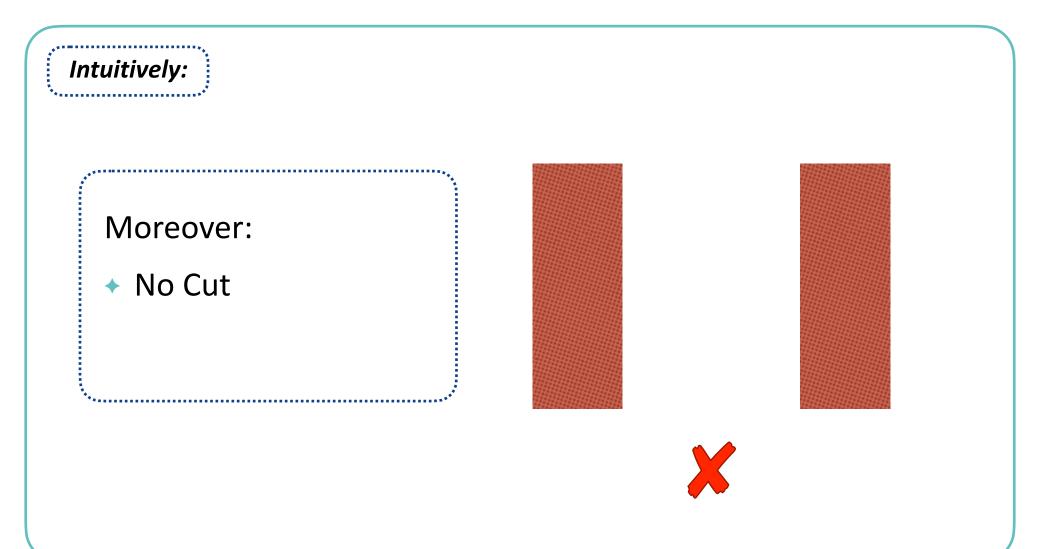


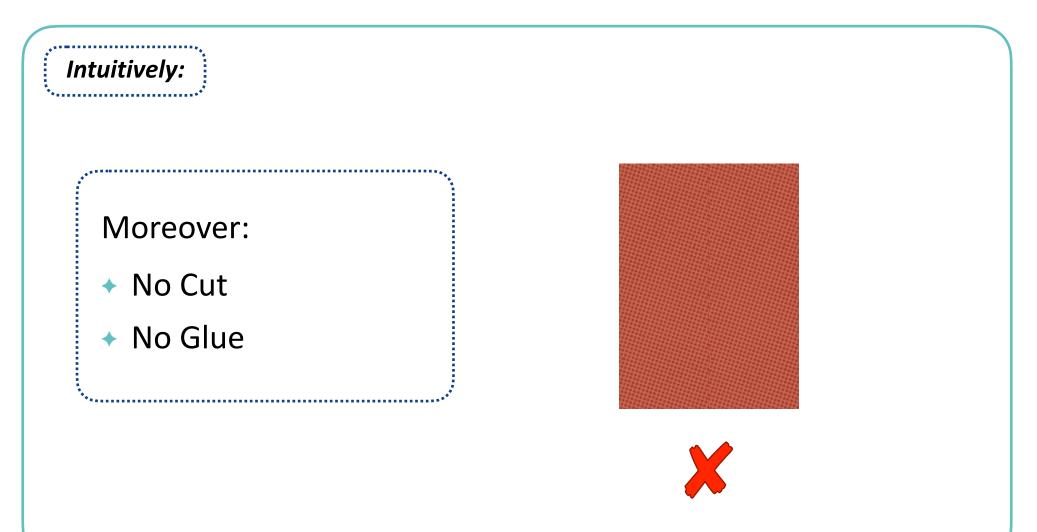








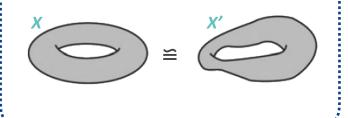




Definition:

I is a *topological invariant* if, given two topological spaces (X, T) and (X', T'),

X is homeomorphic to X'



Some classical topological invariants:

- Connectedness
- Compactness
- Manifoldness

\$<u>.</u>.....

X and X' have the same

topological invariant

I(X) = I(X')

- Orientability
- Euler characteristic
- Homology
- Homotopy

Is there a "perfect" topological invariant I such that $X \cong X'$ if and only if I(X) = I(X')?

Question:

Is there a "perfect" topological invariant I such that $X \cong X'$ if and only if I(X) = I(X')?

Let us **simplify the question** and let focus on:

- Considering a specific topological invariant I (e.g. the homology)
- Completely characterizing just the **spheres** $S^n := \{x \in \mathbb{R}^n : |x| = 1\}$

The above question turns into the following:

If X and Sⁿ have the same homology, then $X \cong S^n$?

Is there a "perfect" topological invariant I such that $X \cong X'$ if and only if I(X) = I(X')?

Let us **simplify the question** and let focus on:

- Considering a specific topological invariant I (e.g. the homology)
- Completely characterizing just the **spheres** $S^n := \{x \in \mathbb{R}^n : |x| = 1\}$

The above question turns into the following:

If X and Sⁿ have the same homology, then $X \cong S^n$?

Replacing homology with homotopy, the answer is positive!

But:

Replacing homology with homotopy, the answer is positive!

Poincaré Conjecture (3rd Millennium Prize Problem):

But:

If X is a closed n-manifold homotopy equivalent to S^n , then $X \cong S^n$

Proven by Grigori Perelman in 2003

Replacing homology with homotopy, the answer is positive!

Poincaré Conjecture (3rd Millennium Prize Problem):

If X is a closed n-manifold homotopy equivalent to S^n , then $X \cong S^n$

Proven by Grigori Perelman in 2003

So:

But:

Why we will mainly focus on homology rather than homotopy?

Replacing homology with homotopy, the answer is positive!

Poincaré Conjecture (3rd Millennium Prize Problem):

If X is a closed n-manifold homotopy equivalent to S^n , then $X \cong S^n$

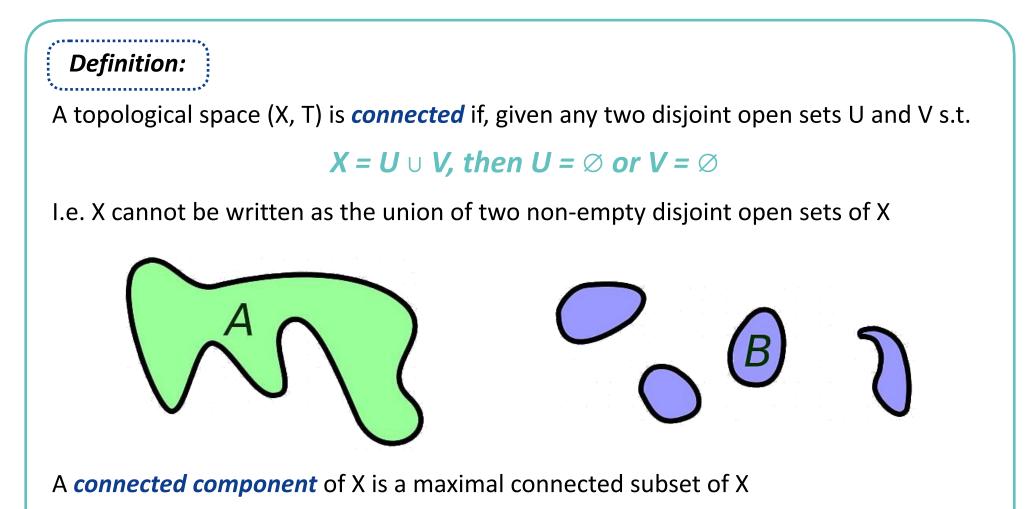
Proven by Grigori Perelman in 2003

So:

But:

Why we will mainly focus on homology rather than homotopy?

Because, in practice, computing homotopy groups is nearly impossible!



Connected Spaces

Definition:

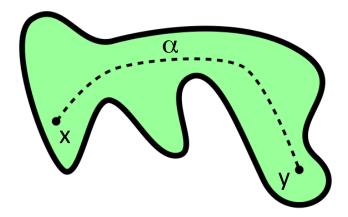
A topological space (X, T) is *path-connected* if, for every pair x, $y \in X$, there exists

a *continuous map* α : [0,1] \rightarrow X such that α (0) = x and α (1) = y

The map α is called a *path* from x to y

A path-connected component of X is a

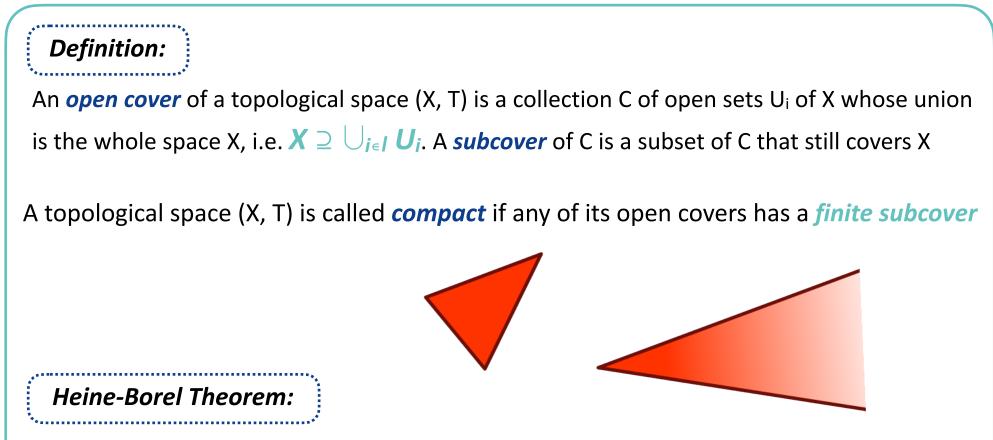
maximal path-connected subset of X



Proposition:

If X is path-connected, then X is connected. The converse is not true

Compact Spaces



A subset S of the Euclidean space \mathbb{E}^n is *compact if and only if* S is *closed* and *bounded* (i.e. there exists r > 0 such that, for any x, y \in S, d(x, y) < r)

Manifolds

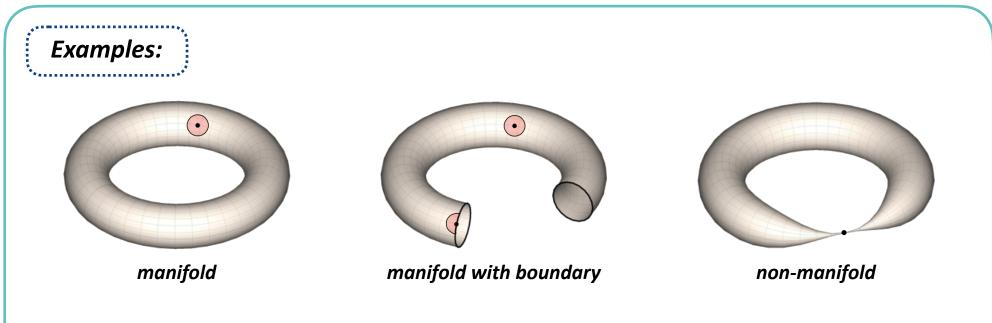
Definitions:

A topological space (X, T) is called

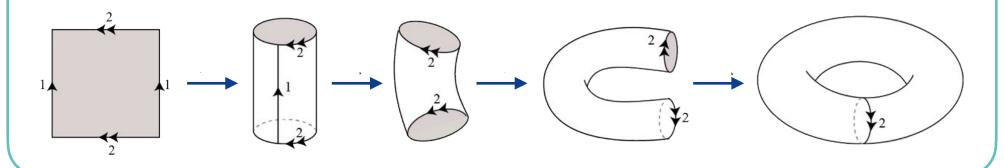
- *locally homeomorphic* to Eⁿ if every element x ∈ X has a neighborhood which is homeomorphic to the n-dimensional Euclidean space Eⁿ
- Hausdorff if any pair of distinct elements x, y ∈ X admits disjoint neighborhoods (any metric space and so any subspace of an Euclidean space is Hausdorff)

A *(topological) n-manifold* M is a *Hausdorff* space that is *locally homeomorphic* to the n-dimensional Euclidean space \mathbb{E}^n

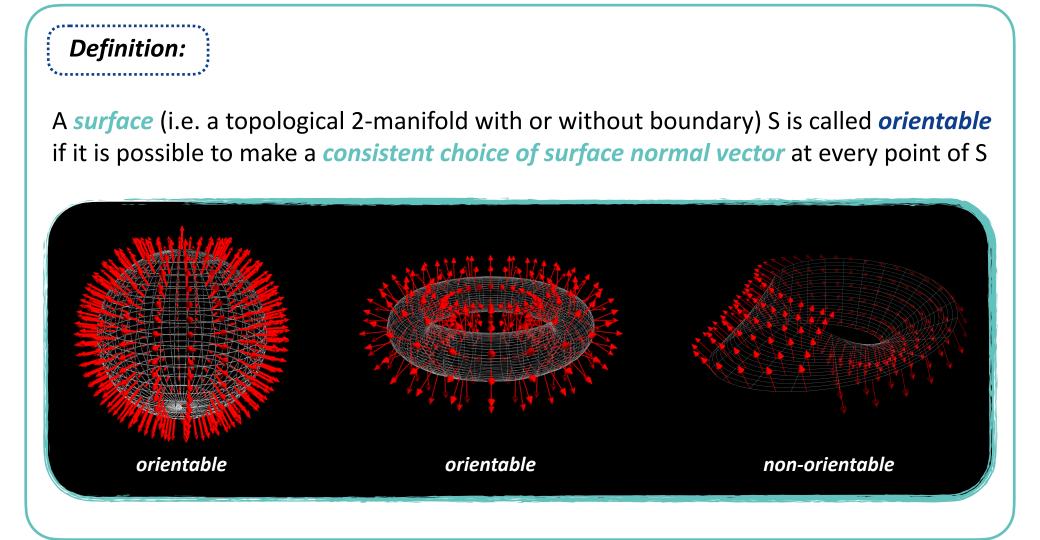
A **(topological)** *n*-manifold with boundary M is a Hausdorff space in which every element has a *neighborhood homeomorphic* to the n-dimensional *Euclidean space* \mathbb{E}^n or to the n-dimensional *Euclidean half-space* $H^n := \{ x \in \mathbb{R}^n \mid x_n \ge 0 \}$



Recall that a *torus* can be built from a *unit square* by the following construction



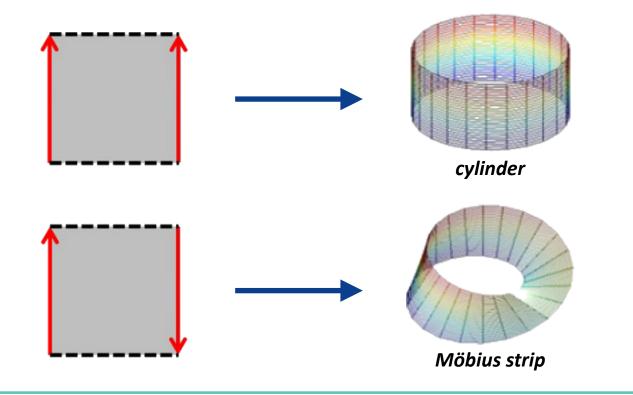
Orientable Surfaces



Orientable Surfaces

As for the *torus* and the *cylinder*,

the *Möbius strip* can be built from a unit square via edge identification



Bibliography

General References:

- Books on TDA:
 - A. J. Zomorodian. *Topology for computing*. Cambridge University Press, 2005.
 - * H. Edelsbrunner, J. Harer. *Computational topology: an introduction*. American Mathematical Society, 2010.
 - R. W. Ghrist. *Elementary applied topology*. Seattle: Createspace, 2014.

Papers on TDA:

• G. Carlsson. *Topology and data*. Bulletin of the American Mathematical Society 46.2, pages 255-308, 2009.

Today's References:

- Intro to (Algebraic) Topology:
 - E. Sernesi. *Geometria 2*. Bollati Boringhieri, Torino, 1994.
 - A. Hatcher. Algebraic topology. Cambridge University Press, 2002.