Topological Data Analysis

A Primer on Topology

Ulderico Fugacci
CNR - IMATI

Topological Data Analysis

Topology describes, characterizes, and discriminates shapes by studying their properties that are preserved under continuous deformations, such as stretching and bending, but not tearing or gluing

Topological Data Analysis

Assumption in TDA: Any data can be endowed with a shape.
So, any data can be studied in terms of its topological features

Topological Data Analysis

Geometry or Topology?

Which of these domains look similar?

Geometry or Topology?

And what about these ones?

Geometry or Topology?

The answer depends on the point of view we adopt

Geometry cares about those properties which change when an object is continuously deformed
E.g. length, area, volume, angles, curvature, ...

Geometry or Topology?

The answer depends on the point of view we adopt

Topology
Ged etry cares about those properties which change when an object is continuously deformed
E.g. connectivity, orientation, manifoldness, ...

Why Topology?

In life or social sciences, distances (metric) are constructed using a notion of similarity (proximity): e.g. distance between faces, gene expression proles, Jukes-Cantor distance between sequences

We have that:

+ Construction of a distance has no theoretical backing
+ Small distances still represent similarity, but long distance comparisons hardly make sense
* Distance measurements are typically noisy
* Physical devices, e.g. human eyes, may ignore differences in proximity

Topology is the crudest way to capture invariants under distortions of distances (even if, at the presence of noise, one needs topology varied with scales)

Topological Spaces

Definition:

A topological space (X, T) is a non-empty set X endowed with a family T, called topology, of subsets of X satisfying the following properties:

* X and the empty set \varnothing belong to T
* Union of any collection of elements of T is in T
* Intersection of any finite collection of elements of T is in T

A set U in T is called open set. A set F such that $X \backslash F$ is in T is called closed set Dually to the above definition, a topological space can be characterized by defining its closed sets

Topological Spaces

Exercise:

Given the set $X:=\{a, b, c\}$, define a topology T for X

Topological Spaces

Exercise:

Which of the following families are topologies for X?

Topological Spaces

Exercise:

Which of the following families are topologies for X?

Topological Spaces

Definition:

Let T be a topology of a non-empty set X . A basis of T is a family of open sets $\mathscr{B} \subseteq \mathrm{T}$ such that each open sets of T is union of elements of \mathscr{B}

Proposition:

Let X be a non-empty set and \mathscr{B} be a family of subsets of X such that:
$+\bigcup_{B \in \mathscr{B}} \mathrm{~B}=\mathrm{X}$

* For any $\mathrm{A}, \mathrm{B} \in \mathscr{B}, \mathrm{A} \cap \mathrm{B}$ is union of elements of \mathscr{B}

Then, there exists a (unique) topology T of X of which \mathscr{B} is a basis

Metric Spaces as Topological Spaces

Definition:

A metric space (X, d) is a non-empty set X on which is defined a function $\mathrm{d}: \mathrm{X} \times \mathrm{X} \rightarrow \mathbb{R}$, called distance, such that, for any $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$:

+ $d(x, y) \geq 0$
+ $\mathrm{d}(\mathrm{x}, \mathrm{y})=0$ if and only if $\mathrm{x}=\mathrm{y} \quad$ (identity of indiscernibles)
+ $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{y}, \mathrm{x})$ (symmetry)
+ $\mathrm{d}(\mathrm{x}, \mathrm{z}) \leq \mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{d}(\mathrm{y}, \mathrm{z}) \quad$ (subadditivity or triangle inequality)

Proposition:

Each metric space (X, d) is a topological space (X, T) with respect to the topology T having as basis $\mathscr{B}:=\{B(\boldsymbol{x}, r) \mid \boldsymbol{x} \in \boldsymbol{X}, r>\mathbf{0}\}$, where
$B(x, r)$ is the open ball of radius r centered in x defined as $B(x, r):=\{y \in X \mid d(x, y)<r\}$

Metric Spaces as Topological Spaces

Example: The n-dimensional Euclidean space \mathbb{E}^{n} is the topological space induced by the metric space $\left(\mathbb{R}^{n}, d\right)$ where d is defined as

$$
d(x, y):=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}
$$

For any $p \geq 1$, the Minkowski distance d_{p} induces the same topology on \mathbb{R}^{n}

$$
d_{p}(x, y):=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{p}\right)^{1 / p}
$$

Topological Spaces

Some Basic Notions:

Given a topological space (X, T), an element x of X, and a subset S of X :

* A neighborhood of x is a subset V of X that includes an open set U containing x (i.e. $x \in U \subseteq V$)
* The interior $i(S)$ of S is the union of all subset of S that are open of X * $\quad i(S)$ consists of the elements x of X for which there exists an open neighborhood V of x completely contained in S
* The closure $c(S)$ of S is the intersection of all closed sets containing S * $c(S)$ consists of the elements x of X for which every open neighborhood V of x
 contains a element of S
* The boundary $\partial(S)$ of S is the set of elements in the closure of S not belonging to the interior of $S($ i.e. $\partial(S)=c(S) \backslash i(S))$
* $\partial(S)$ consists of the elements x of X for which every open neighborhood V of x intersects both S and $X \backslash S$

Topological Spaces

Definition:

Given a topological space (X, T) and a subset S of X , the subspace topology T_{s} on S is defined as

$$
T_{s}:=\{S \cap U \mid U \in T\}
$$

I.e. a subset of S is an open set of T_{S} if and only if it is the intersection of S with an open set of X

S equipped with the subset topology T_{s} is called a subspace of (X, T)

Continuous Functions

Definition:

Given two topological spaces (X, T) and (X^{\prime}, T^{\prime}), a function $f: X \rightarrow X^{\prime}$ is called

* Continuous in $x \in X$ if, for each neighborhood V^{\prime} of $f(x)$ in X^{\prime}, there exists a neighborhood V of x in X such that $f(V) \subseteq V^{\prime}$
* Continuous if it is continuous in each element $x \in X$ or, equivalently, if, for each open set U^{\prime} of $X^{\prime}, f^{-1}\left(U^{\prime}\right)$ is an open set of X

Continuous Functions

Exercise:

Let X be a non-empty set X and let T, T^{\prime} be the discrete and the trivial topologies on X, respectively. Which of the following functions is continuous?

* the identity map id: $(\mathbf{X}, \boldsymbol{T}) \rightarrow\left(\mathbf{X}, \boldsymbol{T}^{\prime}\right)$
+ the identity map id': $\left(\boldsymbol{X}, \boldsymbol{T}^{\prime}\right) \rightarrow(X, \boldsymbol{T})$

Continuous Functions

Proposition:

Given two metric spaces (X, d) and $\left(X^{\prime}, d^{\prime}\right)$, a function $f: X \rightarrow X^{\prime}$ is continuous in $\mathbf{x} \in \mathbf{X}$

if and only if

$\forall \varepsilon>0 \exists \delta>0$ such that, for any $\mathbf{y} \in \mathbf{X}$ with $\mathbf{d}(\mathbf{x}, \mathrm{y})<\delta, \mathbf{d}^{\prime}(\mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{y}))<\varepsilon$

Homeomorphisms

Definition:

Given two topological spaces (X, T) and $\left(X^{\prime}, T^{\prime}\right)$,
a function $\mathrm{f}: \mathrm{X} \longrightarrow \mathrm{X}^{\prime}$ is called homeomorphism if:

* fis a bijection
* f is continuous
* f^{-1} is continuous

Two topological spaces (X, T) and ($\mathrm{X}^{\prime}, \mathrm{T}^{\prime}$) are homeomorphic and denoted $X \cong X^{\prime}$ if there exists a homeomorphism $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}^{\prime}$

Homeomorphisms induce an equivalence relation of topological spaces partitioning them into equivalence classes

Homeomorphisms

Intuitively:

The notion of homeomorphism captures the idea of continuous deformation

2ll

Homeomorphisms

Intuitively:

One can:

Homeomorphisms

Intuitively:

One can:

* Stretch

Homeomorphisms

Intuitively:

One can:

* Stretch
+ Compress

Homeomorphisms

Intuitively:

One can:

* Stretch
+ Compress

But not too much!

Homeomorphisms

Intuitively:

Moreover:

Homeomorphisms

Intuitively:

Moreover:
No Cut

Homeomorphisms

Intuitively:

Moreover:

+ No Cut
* No Glue

Topological Invariants

Definition:

I is a topological invariant if, given two topological spaces (X, T) and $\left(X^{\prime}, T^{\prime}\right)$,

Some classical topological invariants:

* Connectedness
+ Compactness
+ Manifoldness

* Orientability
+ Euler characteristic
+ Homology
+ Homotopy

Topological Invariants

Question:

Is there a "perfect" topological invariant I such that

$$
X \cong X^{\prime} \text { if and only if }\|(X)=\|\left(X^{\prime}\right) ?
$$

Topological Invariants

Question:

Is there a "perfect" topological invariant I such that

$$
X \cong X^{\prime} \text { if and only if }\|(X)=\|\left(X^{\prime}\right) ?
$$

Let us simplify the question and let focus on:

* Considering a specific topological invariant I (e.g. the homology)
* Completely characterizing just the spheres $S^{n}:=\left\{x \in \mathbb{R}^{n}:|x|=1\right\}$

The above question turns into the following:
If X and S^{n} have the same homology, then $X \cong S^{n}$?

Topological Invariants

Question:

Is there a "perfect" topological invariant I such that

$$
X \cong X^{\prime} \text { if and only if }\|(X)=\|\left(X^{\prime}\right) ?
$$

Let us simplify the question and let focus on:

* Considering a specific topological invariant I (e.g. the homology)
* Completely characterizing just the spheres $S^{n}:=\left\{x \in \mathbb{R}^{n}:|x|=1\right\}$

The above question turns into the following:
If X and S^{n} have the same homology, then $X \cong S^{n}$?

Topological Invariants

But:

Replacing homology with homotopy, the answer is positive!

Topological Invariants

But:

Replacing homology with homotopy, the answer is positive!

Poincaré Conjecture (3rd Millennium Prize Problem):

If X is a closed n-manifold homotopy equivalent to S^{n}, then $X \cong S^{n}$

Proven by Grigori Perelman in 2003

Topological Invariants

But:

Replacing homology with homotopy, the answer is positive!

Poincaré Conjecture (3rd Millennium Prize Problem):

If X is a closed n-manifold homotopy equivalent to S^{n}, then $X \cong S^{n}$

Proven by Grigori Perelman in 2003

So:
Why we will mainly focus on homology rather than homotopy?

Topological Invariants

But:

Replacing homology with homotopy, the answer is positive!

Poincaré Conjecture (3rd Millennium Prize Problem):

If X is a closed n-manifold homotopy equivalent to S^{n}, then $X \cong S^{n}$

So:
Why we will mainly focus on homology rather than homotopy?

Because, in practice, computing homotopy groups is nearly impossible!

Connected Spaces

Definition:

A topological space (X, T) is connected if, given any two disjoint open sets U and V s.t.

$$
X=U \cup V \text {, then } U=\varnothing \text { or } V=\varnothing
$$

I.e. X cannot be written as the union of two non-empty disjoint open sets of X

A connected component of X is a maximal connected subset of X

Connected Spaces

Definition:

A topological space (X, T) is path-connected if, for every pair $x, y \in X$, there exists a continuous map $\alpha:[0,1] \rightarrow X$ such that $\alpha(0)=x$ and $\alpha(1)=y$

The map α is called a path from x to y

A path-connected component of X is a maximal path-connected subset of X

Proposition:

If X is path-connected, then X is connected. The converse is not true

Compact Spaces

Definition:

An open cover of a topological space (X, T) is a collection C of open sets U_{i} of X whose union is the whole space X, i.e. $X \supseteq \bigcup_{i \in I} U_{i}$. A subcover of C is a subset of C that still covers X

A topological space (X, T) is called compact if any of its open covers has a finite subcover

Heine-Borel Theorem:

A subset S of the Euclidean space \mathbb{E}^{n} is compact if and only if S is closed and bounded (i.e. there exists $r>0$ such that, for any $x, y \in S, d(x, y)<r$)

Manifolds

Definitions:

A topological space (X, T) is called

* locally homeomorphic to \mathbb{E}^{n} if every element $x \in X$ has a neighborhood which is homeomorphic to the n-dimensional Euclidean space \mathbb{E}^{n}
* Hausdorff if any pair of distinct elements $x, y \in X$ admits disjoint neighborhoods (any metric space and so any subspace of an Euclidean space is Hausdorff)

A (topological) n-manifold M is a Hausdorff space that is locally homeomorphic to the n -dimensional Euclidean space \mathbb{E}^{n}

A (topological) n-manifold with boundary M is a Hausdorff space in which every element has a neighborhood homeomorphic to the n-dimensional Euclidean space \mathbb{E}^{n} or to the n-dimensional Euclidean half-space $H^{n}:=\left\{x \in \mathbb{R}^{n} \mid x_{n} \geq 0\right\}$

Manifolds

Examples:

manifold

manifold with boundary

non-manifold

Recall that a torus can be built from a unit square by the following construction

Orientable Surfaces

Definition:

A surface (i.e. a topological 2-manifold with or without boundary) S is called orientable if it is possible to make a consistent choice of surface normal vector at every point of S

orientable

Orientable Surfaces

Remark:

As for the torus and the cylinder, the Möbius strip can be built from a unit square via edge identification

cylinder

Möbius strip

Bibliography

General References:

+ Books on TDA:
* A. J. Zomorodian. Topology for computing. Cambridge University Press, 2005.
\% H. Edelsbrunner, J. Harer. Computational topology: an introduction. American Mathematical Society, 2010.
* R. W. Ghrist. Elementary applied topology. Seattle: Createspace, 2014.
+ Papers on TDA:
* G. Carlsson. Topology and data. Bulletin of the American Mathematical Society 46.2, pages 255-308, 2009.

Today's References:

- Intro to (Algebraic) Topology:
\% E. Sernesi. Geometria 2. Bollati Boringhieri, Torino, 1994.
* A. Hatcher. Algebraic topology. Cambridge University Press, 2002.

